News

Microbiome Stress Project

The Gibbons Group Joins the Microbiome Stress Project

The lab will join researchers at Duke University, the University of New Hampshire, and Montana State University to conduct a large-scale meta-analysis of how environmental stressors impact microbial communities. Prior surveys, like the Earth and Human Microbiome Projects, have established a baseline for healthy ecosystems across the planet. The Microbiome Stress Project will focus on ecological resistance and resilience of natural microbial communities to disturbances. The meta-analysis will encompass hundreds of studies and dozens of disturbances across many different ecosystems. The Gibbons Group has developed tools and techniques for conducting case-control meta-analyses across studies, which will be applied in this project. The goal of this project is to infer the general principals underlying ecological community responses to perturbations and validate these hypotheses in controlled bioreactors at Duke University.

Recent Articles

  • Building a Better BMI

    ISB researchers have constructed biological body mass index (BMI) measures that offer a more accurate representation of metabolic health and are more varied, informative and actionable than the traditional, long-used BMI equation. The work was published in the journal Nature Medicine. 

  • Dr. Sean Gibbons Promoted to Associate Professor

    Dr. Sean Gibbons – an expert in microbial ecology and evolution, computational systems biology, the human gut microbiome and its impacts on health, and head of ISB’s Gibbons Lab – has been promoted to Associate Professor. “Sean’s achievements since joining ISB in 2018 as a Washington Research Foundation Distinguished Investigator have been spectacular,” ISB President Dr. Jim Heath said. “With his focus on the microbiome, he brought a whole new…

  • The Gut Microbiome’s Supersized Role In Shaping Our Metabolome

    ISB researchers have shown which blood metabolites are associated with the gut microbiome, genetics, or the interplay between both. Their findings, published in the journal Nature Metabolism, have promising implications for guiding targeted therapies designed to alter the composition of the blood metabolome to improve human health.